

What is the OSWE 2

Why OSWE 2

Mindset 3

Ideal path to OSWE 4

Pre-Course Preparation 5

The Community 6

Course Structure 6

The Lab 7

Lab Time 8

Methodology 8

Reconnaissance 9

Code Review 9

Application Flow 10

Auth + Session Management 11

Injection + Data Handling Flaws 14

Server-Side + Logic Flaws 16

Exploit Development 19

Burp Suite 19

Debuggers 20

The Exam 21

The Strategy 21

The Report 23

Practice 24

Reminders 25

Ending Notes 26

What is the OSWE

The OSWE certification represents an advanced level of web application
security expertise, focusing specifically on white-box penetration testing.
Unlike black-box testing where you have limited visibility, OSWE professionals
analyze source code to identify vulnerabilities and develop custom exploits
for them.

At its core, OSWE validates your ability to:

● Read and understand application source code
● Identify security vulnerabilities through code review
● Develop custom, working exploits for discovered vulnerabilities
● Bypass security controls through in-depth understanding of their

implementation

OSWE is fundamentally different from OSCP and OSWA. While OSCP
focuses on network/infrastructure penetration testing and OSWA examines
black-box web application testing, OSWE delves into analyzing how
applications function at the code level. You'll need to understand
programming patterns, debug applications, and craft sophisticated exploits
rather than relying primarily on automated tools or known exploitation
techniques.

Why OSWE

The OSWE certification provides tangible validation of advanced web security
skills that employers value. It demonstrates not just your technical knowledge
but your ability to apply that knowledge in complex scenarios requiring deep
analysis.

2

breachedlabs.com

http://breachedlabs.com

This certification opens doors to specialized career paths including application
security engineer/specialist roles, security research positions or even senior
penetration tester roles (especially those focusing on application security).

Beyond career advancement, OSWE helps you develop a deeper
understanding of security vulnerabilities. By examining issues from their root
causes in code, you'll gain insights that black-box testing alone cannot
provide. This knowledge transforms how you approach security assessments
and enables you to find vulnerabilities that automated tools miss.

Mindset

Developing the right mindset is crucial for OSWE success:

Persistence & Patience: Many exploits in OSWE require multiple attempts
and refinements. You'll spend significant time debugging code and adjusting
your approaches. The ability to persist through challenges without becoming
frustrated is essential.

Attention to Detail: Security vulnerabilities often hide in subtle implementation
details or edge cases. You must develop a keen eye for spotting these
nuances in code, whether it's an unvalidated parameter, a logic flaw, or a race
condition.

Developer's Perspective: Successful OSWE students think like developers.
Understanding why certain patterns are used, how frameworks operate, and
where developers commonly make mistakes gives you a significant
advantage.

Attacker's Creativity: While understanding the developer's perspective is
important, you must also apply creative thinking to identify how systems can

3

breachedlabs.com

http://breachedlabs.com

be abused. This involves imagining unique ways to chain vulnerabilities
together or bypass security controls.

Systematic Approach: OSWE students balance exploratory testing with
methodical analysis. Developing a systematic approach to code review and
vulnerability identification ensures thorough coverage and prevents missing
critical issues.

Ideal path to OSWE

Before tackling OSWE, ensure you have a solid foundation in:

Web Technologies: Comprehensive understanding of HTTP protocol,
request/response structures, headers, cookies, sessions, as well as
client-side technologies like HTML, CSS, and JavaScript.

Server-Side Programming: Proficiency in at least one server-side language is
essential, though mastery of multiple languages (PHP, Java, C#, Python, and
Node.js) will significantly enhance your ability to tackle diverse applications in
the exam.

Web Security Fundamentals: While knowing the OWASP Top 10 provides a
baseline, you'll need a deeper understanding of how these vulnerabilities
manifest in code, their root causes, and advanced exploitation techniques.

Penetration Testing Experience: Prior experience with certifications like
OSCP, HTB's Certified Bug Bounty Hunter, or Burp Suite Certified Practitioner
provides valuable context on methodology and tooling.

Database Knowledge: Understanding both SQL and NoSQL database
systems, query languages, and how Object-Relational Mappers (ORMs)
function and can be exploited.

4

breachedlabs.com

http://breachedlabs.com

Operating System Familiarity: Comfort navigating both Linux and Windows
command-line environments for tasks related to testing and exploitation.

Scripting Skills: Python proficiency is highly recommended for developing
exploits, automating tasks, and crafting proof-of-concept code.

Pre-Course Preparation

Prepare for OSWE by strengthening your programming skills beyond syntax
basics, focusing on application architecture and patterns in PHP, Java, and
C#. Build small projects to practice analyzing unfamiliar code and
understanding framework-specific behaviors that will be crucial during exam
challenges.

Study how web vulnerabilities manifest in different programming languages,
including language-specific pitfalls like PHP type juggling or Java
deserialization. Learn to identify subtle logic flaws missed by automated tools
and understand how security controls can be bypassed through code-level
weaknesses.

Practice code review through platforms like PentesterLab and by analyzing
open-source applications. Master debugging tools across different
environments, including IDE features and language-specific debuggers that
will accelerate your exploit development process. Finally, develop your Python
scripting skills for crafting custom HTTP requests and creating flexible exploit
scripts that handle sessions, cookies, and authentication, all of which are
essential capabilities for demonstrating the practical exploitation skills at the
core of OSWE certification.

5

breachedlabs.com

http://breachedlabs.com

The Community
The OffSec community provides invaluable support during your OSWE
journey through official forums and Discord channels where you can engage
with fellow students and alumni. When participating, respect the no-spoilers
policy by framing questions around concepts rather than specific course
exercises, sharing your troubleshooting steps, and offering insights to others
while maintaining certification integrity.

Course Structure

The WEB-300 (Advanced Web Attacks and Exploitation) is structured to build
your white-box web application testing skills through a progression of
increasingly complex concepts. The course covers multiple technology stacks
with primary focus on .NET, Java, and PHP applications, with additional
coverage of Node.js environments. Each module introduces specific
vulnerabilities within the context of these languages and their common
frameworks.

Unlike other OffSec courses that focus on black-box methodologies,
WEB-300 emphasizes white-box testing approaches where source code
access is available. This paradigm shift requires learning to quickly navigate
unfamiliar codebases, identify potential entry points, and trace execution flow
through application logic.

Key concepts introduced throughout the course include setting up proper
debugging environments for different languages, establishing patterns for
efficient code analysis, and identifying vulnerability classes that particularly
affect each technology stack.

6

breachedlabs.com

http://breachedlabs.com

The course places special emphasis on:

● Source code auditing techniques
● Authentication bypass vulnerabilities
● Server-side request forgery (SSRF)
● XML external entity (XXE) injection
● SQL injection beyond basic exploitation
● Remote code execution through various vectors
● Deserialization vulnerabilities
● Logic flaws requiring deep application understanding
● Bypassing security controls via code manipulation

The Lab

The WEB-300 lab environment provides accessible target applications that
mirror the complexity and diversity you'll encounter in the exam. Access to
the lab environment is through a VPN connection that requires proper
configuration on your system. When connected, you'll interact with multiple
virtual machines hosting various applications built on different technology
stacks.

The lab topology consists of segmented environments containing vulnerable
applications with their associated source code. Each lab machine represents
a distinct challenge with specific learning objectives tied to course materials.
The environment is designed to familiarize you with realistic development
setups, including properly configured IDEs, debugging tools, and access to
application source code repositories.

7

breachedlabs.com

http://breachedlabs.com

Lab Time

Approach the labs with a deliberate strategy that balances depth and
breadth. Initially focused on mastering one technology stack thoroughly
before moving to others, this builds transferable skills more effectively than
surface-level exposure to all environments. As you gain confidence, ensure
you achieve comprehensive coverage across all platforms, as the exam may
test any of the covered technologies.

Meticulous note-taking is non-negotiable for OSWE success. Document all
significant code paths, vulnerability findings, and exploitation attempts (both
successful and failed). Include code snippets, HTTP request/response pairs,
and exploitation scripts with detailed comments. These notes become
invaluable during exam preparation and often reveal patterns across different
lab scenarios that highlight conceptual connections.

Recognize and avoid rabbit holes, situations where you spend excessive time
on unproductive paths. Set time limits for specific approaches, and if you
don't make measurable progress within that time frame, step back to
reevaluate. Sometimes the solution requires a completely different perspective
rather than further refinement of a flawed approach. Learn to recognize when
you're persisting with diminishing returns.

Methodology
White-box testing fundamentally changes your penetration testing approach
by eliminating much of the guesswork present in black-box assessments.
Instead of blind probing, you'll conduct targeted analysis based on actual
code implementation. This methodological shift allows you to precisely identify
vulnerable code paths, understand input validation mechanisms, and craft

8

breachedlabs.com

http://breachedlabs.com

exploits tailored to specific application logic rather than relying on generic
payloads or automated scanners.

Reconnaissance

With source code access, effective information gathering becomes
code-based mapping of the application's structure. Begin by identifying all
endpoints, input parameters, and how they connect to back-end functions.
Document the frameworks and libraries in use, noting their versions for
potential known vulnerabilities. Most importantly, trace data flow through the
application to understand how user input is processed, transformed, and
utilized across components.

Understanding authentication and authorization logic is particularly critical in
white-box testing. Analyze how credentials are validated, how sessions are
established and maintained, and especially how access controls are
implemented for different resources and functions. Look for inconsistencies in
permission checks or places where authorization might be bypassed.

White-box testing uniquely allows you to discover hidden functionality not
exposed in the normal user interface. Search for debug endpoints, admin
features, testing functions, or alternative authentication methods that might be
completely invisible during black-box testing but can provide valuable attack
vectors.

Code Review

Developing efficiency in reading unfamiliar codebases is essential for OSWE
success. Learn to quickly identify application entry points, core business logic

9

breachedlabs.com

http://breachedlabs.com

components, and data processing functions. Focus on understanding the
application's overall architecture before diving into specific functions.

Conduct thorough taint analysis by methodically tracing user input from
source (where it enters the application) to sink (where it's used in sensitive
operations). Pay special attention to input that reaches potentially dangerous
functions without proper sanitization or validation.

Familiarize yourself with language-specific vulnerable patterns and risky

functions. Examples include eval() in PHP, deserialization methods in Java,

Process.Start() in C#, and template string evaluation in various
frameworks. Creating a personal reference of these danger zones accelerates
your vulnerability hunting.

Don't overlook dependencies and third-party components. Review imported
libraries, checking their versions against known CVE databases. Sometimes
the most exploitable vulnerability exists not in custom code but in an outdated
package with documented weaknesses.

Application Flow

Setting up proper debugging environments is crucial for OSWE preparation.
Learn to configure both local and remote debugging connections for all
relevant technology stacks (PHP with Xdebug, Java with JDWP, .NET with
Visual Studio, etc.). Practice until environment setup becomes second nature.

Master core debugging techniques including strategic breakpoint placement,
step-through execution, variable inspection, and call stack analysis. These
skills allow you to observe application behavior at runtime, confirming theories
developed during static code analysis.

10

breachedlabs.com

http://breachedlabs.com

Use debugging to understand application state at critical junctures,
particularly around authentication decisions, access control checks, and data
transformation operations. This runtime visibility often reveals vulnerabilities
that remain hidden in static analysis.

Auth + Session Management

Authentication vulnerabilities in white-box testing often involve account
takeover scenarios through flawed implementations. Analyze password reset
functionality for predictable tokens, timing attacks, or insufficient validation.
Examine parameter manipulation opportunities where changing user
identifiers might bypass authentication or authorization checks.

Example:

<?php

// request_reset.php

require 'db_connection.php'; // Assume DB connection setup

$username = $_POST['username'];

if (!empty($username)) {

 // --- VULNERABILITY ---

 // Token generated using only username (or timestamp, etc.) - predictable!

 // An attacker can guess the token for any user if they know the algorithm.

 $reset_token = md5($username . "somesalt"); // A fixed salt doesn't help much here

 // $reset_token = md5(time()); // Also predictable within a time window

 $expiry = time() + 3600; // Token valid for 1 hour

11

breachedlabs.com

http://breachedlabs.com

 // Store the token and expiry associated with the user

 $stmt = $pdo->prepare("UPDATE users SET reset_token = ?, token_expiry = ? WHERE
username = ?");

 $stmt->execute([$reset_token, $expiry, $username]);

 // Send email with link: /reset_password.php?token=...&username=...

 echo "Password reset link sent (if user exists).";

}

// reset_password.php

require 'db_connection.php';

$token = $_GET['token'];

$username = $_GET['username']; // Sometimes username is also passed, making prediction
easier

$new_password = $_POST['new_password'];

if (!empty($token) && !empty($username) && !empty($new_password)) {

 $stmt = $pdo->prepare("SELECT reset_token, token_expiry FROM users WHERE username =
?");

 $stmt->execute([$username]);

 $user = $stmt->fetch();

 // --- VULNERABILITY CHECK ---

 // 1. Does the token actually match what was generated?

 // 2. Is the token expired?

 // 3. Critical: Does this token *belong* to this user? (Checked implicitly here via
username lookup)

 if ($user && hash_equals($user['reset_token'], $token) && time() <
$user['token_expiry']) {

12

breachedlabs.com

http://breachedlabs.com

 // Hash the new password properly (example using password_hash)

 $hashed_password = password_hash($new_password, PASSWORD_DEFAULT);

 // Update password and clear token

 $stmt = $pdo->prepare("UPDATE users SET password = ?, reset_token = NULL,
token_expiry = NULL WHERE username = ?");

 $stmt->execute([$hashed_password, $username]);

 echo "Password updated successfully.";

 } else {

 echo "Invalid or expired token.";

 }

}

?>

Session management flaws become evident when examining session
generation and validation code. Look for session fixation possibilities where
attackers can set victim sessions, session prediction due to insufficient
entropy, or manipulation vulnerabilities where altering session data might
elevate privileges.

JSON Web Token (JWT) implementations frequently contain exploitable flaws
visible in code review. Search for algorithm confusion vulnerabilities (where

none algorithm or algorithm switching is possible), weak secrets used for
signing, or cases where signature verification can be bypassed entirely. Code
review reveals these issues much more clearly than black-box testing.

Insecure Direct Object References (IDOR) and parameter tampering
vulnerabilities are prime targets for white-box analysis. Inspect authorization

13

breachedlabs.com

http://breachedlabs.com

checks around resource access, particularly looking for inconsistent validation
or places where vertical/horizontal access controls are missing or improperly
implemented.

Injection + Data Handling Flaws

SQL injection vulnerabilities become obvious during code review when you
spot poor query construction methods. Look for string concatenation of user
input into queries, insufficient parameterization, or dynamic query building
based on user-controlled values. Beyond classic SQL injection, watch for
second-order injection where tainted data is stored and later used in queries.

Example:

<?php

// Assume $mysqli is an established MySQLi connection object

// Example: $mysqli = new mysqli("localhost", "user", "password", "database");

$product_category = $_GET['category']; // User input from URL: ?category=Gifts

// --- VULNERABILITY ---

// User input ($product_category) is directly concatenated into the SQL query string.

// No escaping, no parameterization.

$sql = "SELECT product_name, price FROM products WHERE category = '" .
$product_category . "' AND released = 1";

// An attacker could provide input like: ' OR '1'='1

// The resulting query would be:

// SELECT product_name, price FROM products WHERE category = '' OR '1'='1' AND
released = 1

// This bypasses the category check and potentially the released check depending on DB
precedence.

14

breachedlabs.com

http://breachedlabs.com

echo "<h1>Products in category: " . htmlspecialchars($product_category) . "</h1>"; //
Output encoding helps prevent XSS here, but not SQLi

if ($result = $mysqli->query($sql)) { // The vulnerable query is executed

 if ($result->num_rows > 0) {

 echo "";

 while ($row = $result->fetch_assoc()) {

 echo "" . htmlspecialchars($row['product_name']) . " - $" .
htmlspecialchars($row['price']) . "";

 }

 echo "";

 } else {

 echo "No products found in this category.";

 }

 $result->free();

} else {

 echo "Error executing query: " . $mysqli->error; // Error messages can leak info

}

$mysqli->close();

?>

NoSQL injection follows similar patterns but with database-specific syntax.
Understanding how MongoDB, Cassandra, or other NoSQL systems handle
queries helps identify injection points in code that might not be obvious during
black-box testing.

15

breachedlabs.com

http://breachedlabs.com

Server-Side Template Injection (SSTI) vulnerabilities occur when user input is
passed to template rendering engines without proper sanitization. Identify
which template engine is in use (Thymeleaf, Jinja2, etc.) and search for places
where dynamic content from user input is rendered directly into templates.

XML External Entity (XXE) injection opportunities become apparent when
reviewing XML parser configurations and DTD processing. Look for disabled
security features, legacy parsers, or places where external entity resolution is
enabled either globally or for specific processing tasks.

Command injection vulnerabilities are easily spotted in code by identifying
where user input is passed to system command execution functions. Look for

shell execution methods in each language (exec(), system(),

Process.Start(), etc.) and trace what user-controlled data might reach
them.

LDAP injection follows similar patterns to SQL injection but targeting directory
services. Review code that constructs LDAP queries or filters, particularly
where user input influences query structure rather than being properly
escaped and parameterized.

Server-Side + Logic Flaws

Server-Side Request Forgery (SSRF) vulnerabilities are identifiable by
examining code that makes outbound network requests using user-supplied
input. Focus on URL fetching functionality, API integrations, document
processors, or any feature involving external resource retrieval where URLs or
hostnames might be manipulated.

File inclusion and path traversal vulnerabilities appear in file handling functions
that incorporate user input into file paths. Search for file reading/writing

16

breachedlabs.com

http://breachedlabs.com

operations where path sanitization is insufficient or where directory traversal

sequences (../) might not be properly filtered.

Example:

<?php

// index.php

// Goal: Load different content modules based on user choice

// Example URL: index.php?page=about.php

$pageToInclude = $_GET['page']; // Directly use user input

if (isset($pageToInclude)) {

 echo "<h1>Loading Content</h1>";

 // --- VULNERABILITY ---

 // The user-supplied $pageToInclude variable is directly used in an 'include'
statement.

 // There's no validation, sanitization, or whitelisting.

 // An attacker can provide paths using '../' to traverse directories or provide

 // other readable file paths on the server.

 // Example Attack: index.php?page=../../../../etc/passwd

 // If PHP has permissions, this will attempt to include and possibly
execute/display /etc/passwd.

 // Example Attack 2: index.php?page=/var/log/apache2/access.log

 // Could lead to log poisoning -> RCE if an attacker can inject PHP code into logs.

 // Example Attack 3 (if file exists): index.php?page=../config/database.php

17

breachedlabs.com

http://breachedlabs.com

 // Might expose database credentials if the config file outputs them or if errors
reveal content.

 include($pageToInclude); // The dangerous function call

 echo "<hr>Content Loaded.";

} else {

 echo "<h1>Welcome</h1><p>Select a page.</p>";

}

?>

Insecure deserialization presents significant risk and becomes evident when
examining how applications deserialize data. Review serialization libraries and
formats in use (Java ObjectInputStream, PHP unserialize, .NET
BinaryFormatter, etc.) and identify where user-controlled serialized data is
processed without type validation or filtering.

Business logic flaws require deep understanding of intended application
functionality and are uniquely discoverable through code review. Look for
assumptions in the code about process order, state transitions, or calculation
methods that might be violated. These flaws often involve using valid
operations in unexpected sequences or contexts.

Race conditions become visible when analyzing code sections that handle
shared resources or state without proper synchronization. Look for critical
sections where time-of-check to time-of-use (TOCTOU) gaps exist or where
multiple operations must complete atomically but lack proper locking
mechanisms.

18

breachedlabs.com

http://breachedlabs.com

Type juggling and weak comparison vulnerabilities are particularly relevant in

loosely-typed languages like PHP. Search for equality checks using == rather

than ===, especially in authentication or authorization contexts where type
conversion might lead to unexpected matches.

Exploit Development

Vulnerability chaining is often necessary to achieve meaningful impact.
Practice identifying how one vulnerability can facilitate another, such as using
SSRF to reach internal services, then leveraging those services for further
compromise. Code review uniquely reveals these potential chains by exposing
internal architecture.

Bypassing filters and input validation becomes systematic with source code
access. Analyze sanitization routines to identify edge cases, encoding tricks,
or logic flaws that might allow dangerous input to pass. Understanding the
exact validation mechanism transforms evasion from guesswork to precision
engineering.

Develop proficiency in crafting proof-of-concept scripts, primarily using

Python with libraries like requests. Your exploits should be
well-commented, parameterized for flexibility, and demonstrate clear impact.
Practice creating exploits that can be easily adapted to similar vulnerabilities
with minimal modification.

Burp Suite

Burp Repeater becomes your primary testing tool in white-box assessment,
allowing precise verification of vulnerable code paths identified during review.

19

breachedlabs.com

http://breachedlabs.com

Use it to craft specialized requests that target specific functions, manipulate
parameters in ways suggested by code analysis, and verify behavior matches
your code-based predictions.

Burp Intruder complements code review by testing parameter variations and
edge cases discovered during source analysis. When you identify validation
routines or filtering mechanisms, Intruder helps methodically test their
boundaries and effectiveness with precisely targeted payloads.

Burp Decoder proves invaluable for manipulating data formats encountered in
code or traffic. As you identify encoding schemes used by the application
(Base64, URL encoding, custom encoding), Decoder helps transform your
payloads to match expected formats or bypass filters.

Burp Comparer facilitates detailed response analysis based on subtle input
variations. Use it to identify minor differences in application behavior that
might indicate successful exploitation, information leakage, or different error
handling paths visible in the code.

Burp extensions can enhance specific testing scenarios, but focus primarily
on core functionality for OSWE. Extensions for JWT analysis, parameter
discovery, or specific vulnerability classes can supplement your manual
analysis, but the exam emphasizes understanding over tool reliance.

Debuggers

Mastery of IDE-integrated debuggers is non-negotiable for OSWE success.
Become proficient with language-specific tools like VS Code with pydbgp for
Python, IntelliJ with JDWP for Java, Visual Studio's debugger for .NET
applications, and Xdebug for PHP environments. Practice until you can
quickly set up debugging sessions in any supported language.

20

breachedlabs.com

http://breachedlabs.com

Browser developer tools complement server-side debugging by providing
visibility into client-server interactions. Use network analysis to observe HTTP
traffic, and JavaScript debugging to understand client-side validation or
processing that affects server-side exploitation.

The Exam

The OSWE exam presents a significant challenge over a 48-hour testing
window (specifically 47 hours and 45 minutes). During this time, you'll face
multiple target machines hosting applications with accompanying source
code. Unlike many other certifications, OSWE requires demonstrating
complete exploitation chains, typically involving authentication bypass
followed by remote code execution (RCE) on each target.

The exam uses a point-based scoring system where each successful
exploitation chain contributes to your total score. The passing threshold
requires proving mastery across multiple targets, you cannot pass by fully
exploiting just one application. Official documentation provides the exact
current passing score, which may be adjusted periodically by OffSec.

The Strategy

Begin with thorough initial reconnaissance of each application's codebase.
Identify key components, entry points, authentication mechanisms, and
overall architecture without diving too deeply into specific functions yet. This
high-level understanding helps prioritize your efforts and spot potential
vulnerability classes early.

21

breachedlabs.com

http://breachedlabs.com

Prioritize targets based on perceived complexity and your personal strengths.
If one application uses a technology stack you're more familiar with, starting
there builds confidence and momentum. However, avoid spending excessive
time on a single target, if you've made no progress after several hours,
consider temporarily switching to an alternative target.

Implement a systematic code review and debugging cycle. After identifying
potential vulnerability points in code, immediately verify them through
debugging and exploitation attempts. This iterative process prevents wasting
time on theoretical vulnerabilities that don't materialize in practice.

Know when to pivot your approach or take strategic breaks. Mental fatigue
significantly impedes problem-solving ability. Schedule short breaks (15-30
minutes) every few hours and longer breaks (1-2 hours) after extended work
sessions. Use break times to reset your thinking, particularly when facing
stubborn challenges.

Maintain meticulous documentation throughout the exam. Record all
discovered endpoints, parameters, vulnerability points, and exploitation
attempts (both successful and failed). These notes become the foundation of
your report and ensure you don't overlook critical details when exhaustion
sets in during later exam hours.

Develop comprehensive proof-of-concept exploit scripts (typically in Python)
that clearly demonstrate each vulnerability chain. These scripts should be
well-commented, reliable, and capable of reproducing the complete
exploitation path from initial access to final objective. Your exploit scripts are
crucial evidence of your understanding and a key component of your report.

22

breachedlabs.com

http://breachedlabs.com

The Report

The OSWE report follows specific structural requirements outlined in the exam
guide. Required sections typically include an executive summary,
methodology, detailed findings for each target (with clear descriptions of
vulnerabilities discovered), and comprehensive proof-of-concept code. OffSec
evaluates reports on technical accuracy, clarity of explanation, and thorough
documentation of exploitation methodology.

Your report must demonstrate a clear understanding of the underlying
vulnerabilities, not just successful exploitation. This includes explaining why
the vulnerability exists, how it was discovered through code review, and the
specific security control failures that enabled exploitation. Proper section
organization, consistent formatting, and professional language are expected.

For each vulnerability, construct a narrative that guides the reader through
discovery, analysis, and exploitation. Begin with how you identified the
vulnerability during code review, showing relevant code snippets that reveal
the security flaw. Then explain your thought process in developing an
exploitation approach, including any challenges encountered and how you
overcame them.

Supporting evidence is critical for OSWE report acceptance. Include
appropriately redacted code snippets that highlight vulnerable sections,
screenshots demonstrating successful exploitation, and command outputs
showing achieved objectives. All visual evidence should be clearly labeled and
referenced within your narrative.

The centerpiece of your evidence is the working exploit script. This script
should be fully documented with comments explaining key functionality, be
capable of reproducing the complete attack chain, and include error handling

23

breachedlabs.com

http://breachedlabs.com

for reliability. Consider providing execution examples showing the script's
output when successfully exploiting the vulnerability.

For each vulnerability, provide specific code-level fixes that would prevent
exploitation. Rather than generic advice like "sanitize inputs," offer concrete
implementation guidance tailored to the application's technology stack and
architecture. Structure remediation recommendations in order of priority,
addressing critical flaws first. Distinguish between immediate tactical fixes and
strategic improvements to the overall security posture. When applicable,
reference relevant security standards or best practices that would have
prevented the vulnerability.

Report writing failures often stem from insufficient documentation during the
exam itself. Without detailed notes on exploitation steps, crucial details may
be omitted from your report. Begin documentation when you start the exam,
not after achieving objectives.

Other common pitfalls include inadequate proof of exploitation, unclear
technical explanations, and poorly organized findings. Reviewers need to
follow your methodology without confusion, if they cannot reproduce your
results based on your report, you may not receive credit regardless of exam
success.

Practice
Identify your weakest technology stacks and deliberately focus practice in
those areas. If Java applications present your greatest challenge, seek out
Java-specific code review exercises and vulnerable applications. For .NET
weaknesses, find ASP.NET projects with intentional vulnerabilities or
open-source applications with known security issues to analyze.

24

breachedlabs.com

http://breachedlabs.com

PentesterLab Pro represents one of the most valuable resources for OSWE
preparation, particularly the Code Review badge exercises. These challenges
systematically build white-box testing skills across diverse technology stacks,
directly aligning with OSWE requirements. Complete all exercises in the Code
Review track, deliberately practicing the methodologies taught in WEB-300.

Supplement your preparation with web challenges from platforms like Hack
The Box, particularly those requiring exploitation development rather than tool
usage. While most HTB challenges are black-box, the skills developed in
solving complex web vulnerabilities transfer well to OSWE scenarios.

Reminders
Debugging proficiency is the single most important technical skill for OSWE
success. Beyond simply finding bugs, debugging allows you to understand
application behavior, verify vulnerability theories, and develop reliable exploits.
Consistent code review practice builds the pattern recognition essential for
efficient vulnerability identification.

Proficiency in exploit development, particularly with Python, distinguishes
successful OSWE students. Create well-structured, reliable scripts that
demonstrate complete exploitation chains rather than isolated
proof-of-concepts. Practice parameterizing your exploits for flexibility and
adding proper error handling to ensure reliability.

The 48-hour exam window may seem generous, but proper time allocation
significantly impacts success rates. Establish clear timeboxes for initial
reconnaissance, deep analysis, exploitation attempts, and documentation.
Avoid fixating on a single approach for more than 2-3 hours without progress.

25

breachedlabs.com

http://breachedlabs.com

Know when to take breaks, when to switch targets, and when to revisit
previous attempts with fresh perspective.

Your report ultimately determines certification success, regardless of exam
performance. Practice writing clear technical narratives that explain
vulnerabilities from discovery through exploitation. Document your
methodology meticulously, including both successful approaches and failed
attempts. Screenshots, code snippets, and well-commented exploit scripts
provide essential context for examiners.

Ending Notes

The OSWE certification journey represents one of the most technically
demanding but rewarding paths in application security. Beyond the credential
itself, this process develops a profound understanding of how security
vulnerabilities manifest in code, knowledge that transforms your effectiveness
as a security professional. The skills cultivated through OSWE preparation
enhance not just penetration testing capability but also secure development
practices and architectural security reviews.

Focus throughout your preparation on understanding the fundamental "why"
behind vulnerabilities rather than memorizing specific exploit techniques. This
deeper comprehension enables you to identify novel vulnerability patterns and
adapt to the evolving application security landscape. The most successful
OSWE students approach each challenge with curiosity about underlying
mechanics rather than focusing solely on exploitation outcomes.

Good luck on your OSWE journey! The challenge ahead will test your
technical skills, problem-solving abilities, and perseverance, but the
comprehensive security understanding you'll develop makes every obstacle
worthwhile.

26

breachedlabs.com

http://breachedlabs.com

	
	
	What is the OSWE
	Why OSWE
	Mindset
	Ideal path to OSWE
	Pre-Course Preparation
	The Community
	Course Structure
	The Lab
	
	Lab Time
	Methodology
	Reconnaissance
	Code Review
	Application Flow
	Auth + Session Management
	Injection + Data Handling Flaws
	Server-Side + Logic Flaws
	Exploit Development
	Burp Suite
	Debuggers
	The Exam
	The Strategy
	The Report
	Practice
	Reminders
	Ending Notes

