

What is the OSED 2

Why OSED 3

Career Paths 4

Ideal Path to OSED 5

The Course 6

The Lab 7

The Exam 8

The Mindset 9

Buffer Overflows 10

Static Analysis With IDA Pro 12

Shellcode Development 13

SEH Exploitation 14

DEP Exploitation 16

ASLR Exploitation 17

Methodology 18

Additional Study Materials 20

Ending Notes 21

What is the OSED
The Offensive Security Exploit Developer (OSED / EXP-301) certification
focuses specifically on modern Windows x86 (32-bit) user-mode exploit
development.

Unlike introductory exploit concepts that might only cover simple stack buffer
overflows, OSED dives into techniques required to bypass common memory
protections implemented in modern operating systems.

Key areas of focus include:

● Bypassing Data Execution Prevention (DEP): Techniques like
Return-Oriented Programming (ROP) are central to OSED, allowing you
to execute code even when the stack or other memory regions are
marked as non-executable.

● Bypassing Address Space Layout Randomization (ASLR):
Strategies to overcome the randomization of memory addresses for
modules, the stack, and heap, often involving information leaks or
targeting non-ASLR modules.

● Structured Exception Handler (SEH) Overwrites: Exploiting the
Windows exception handling mechanism to gain control of execution
flow.

● Custom Shellcode: Crafting position-independent shellcode that
avoids bad characters and potentially uses techniques like egg hunters
or API hashing.

● Creative Problem Solving: Utilizing techniques like finding code
caves, using ROP-based decoders, and chaining various primitives
together to achieve code execution under constraints.

OSED is less about finding the initial vulnerability (though some analysis is
required) and more about the intricate process of turning a known vulnerability

2

breachedlabs.com

http://breachedlabs.com

(like a buffer overflow) into reliable code execution on a system with modern
defenses enabled.

Why OSED
OSED forces you to grapple with low-level concepts in a way few other paths
do. You'll gain an intimate understanding of process memory, assembly
language, debuggers, and Windows internals.

Advanced exploit development, particularly for Windows environments and
bypassing mitigations, is a specialized skill set highly valued in specific
security roles. It differentiates you from those with more generalist
cybersecurity knowledge.

Debugging complex exploits, chaining ROP gadgets, and overcoming
unexpected hurdles requires meticulous attention to detail, persistence, and
creative thinking. Skills which are applicable across many technical domains.

The OSED provides a strong foundation for tackling even more advanced
topics like kernel exploitation, heap exploitation, or exploring different
architectures (often covered in OSEE).

It's also helpful to understand where exactly the OSED fits relative to other
popular Offensive Security certifications:

● OSCP (Offensive Security Certified Professional): Focuses on
penetration testing methodologies. It covers network scanning,
enumeration, exploiting various vulnerabilities across different systems
(web, network services, Active Directory), and basic buffer overflows.
OSCP is broad, testing the ability to compromise multiple machines in a

3

breachedlabs.com

http://breachedlabs.com

network. OSED is deep, focusing intensely on one specific area:
advanced Windows x86 exploit development.

● OSEP (Offensive Security Experienced Penetration Tester):
Focuses on advanced penetration testing techniques, including
bypassing security solutions (like antivirus and EDR), advanced lateral
movement, Active Directory attacks, and some client-side exploitation.
While it involves exploiting systems, it doesn't delve into the ROP chains
and mitigation bypasses to the depth that OSED does. OSEP is about
sophisticated attack chains and evasion.

● OSEE (Offensive Security Exploit Expert): Considered the pinnacle
of OffSec's exploit development track. It covers significantly more
advanced topics, potentially including advanced heap exploitation,
kernel-mode exploitation (Windows and/or Linux), patch diffing, and
exploiting different architectures (e.g., ARM). OSED is often seen as a
prerequisite or stepping stone towards the skills required for OSEE.

In essence: OSCP builds the pentesting foundation, OSEP advances
adversary simulation skills, OSED dives deep into modern user-mode exploit
development, and OSEE tackles the most advanced exploit challenges.

Career Paths
Holding an OSED certification demonstrates a high level of technical expertise
and perseverance, opening doors to several specialized career paths:

● Exploit Developer: Designing and writing exploits for penetration
testing teams, vulnerability research firms, or government/defense
contractors.

● Vulnerability Researcher: Discovering new vulnerabilities (0-days) in
software and systems. Understanding how to exploit vulnerabilities is
often crucial for demonstrating their impact.

4

breachedlabs.com

http://breachedlabs.com

● Security Researcher: A broader role involving vulnerability research,
mitigation techniques, tool development, and publishing findings. OSED
skills are highly relevant.

● Red Team Member (Specialist): While general red teamers benefit,
OSED holders can provide specialized capabilities, crafting custom
exploits for engagements where standard tools fail, especially against
hardened targets.

● Reverse Engineer / Malware Analyst: The deep understanding of
low-level code execution and debugging gained through OSED is
invaluable for analyzing complex software, including malware.

Ideal Path to OSED
While everyone's journey is unique, a common and effective path leading to
OSED often looks like this:

1. Foundational IT & Networking: Basic understanding of operating
systems, hardware, TCP/IP networking, client-server communication.
You need to know how computers and networks fundamentally
operate.

2. Security Basics: Familiarity with core security concepts (CIA triad,
vulnerabilities, threats, risk), common attack vectors, and defensive
measures.

3. Penetration Testing (OSCP Level): Practical experience in finding and
exploiting vulnerabilities across various systems. This develops the
"hacker mindset," enumeration skills, and crucially, often provides the
first exposure to basic buffer overflows and the importance of
persistence.

4. Proficiency in C and Assembly (x86): Dedicated study and practice
with these low-level languages. This is where you learn how memory
really works and how instructions translate to machine actions. This

5

breachedlabs.com

http://breachedlabs.com

step is absolutely critical and often runs parallel to or follows pentesting
study.

5. OSED (EXP-301): With the above foundations, you are ready to tackle
the specific challenges of modern Windows x86 exploit development,
including DEP/ASLR bypasses and advanced shellcoding.

Skipping steps, particularly the low-level programming (C/Assembly) and
foundational exploit concepts (basic buffer overflows), will make the OSED
course material exponentially harder, potentially leading to frustration and
failure. Solid foundational knowledge is paramount.

While OSCP/+ itself isn't a hard requirement if your other skills are
exceptionally strong, the practical experience and basic exploit exposure it
provides are highly beneficial.The OSCP does however provide exposure to
basic buffer overflows (EIP overwrites), the OffSec methodology, practical
problem-solving under pressure, and the crucial "Try Harder" mindset.

The Course
The core learning material typically consists of a detailed PDF document
complemented by video demonstrations. The PDF serves as your primary
textbook. It lays out the theoretical foundations, explains concepts in detail
(e.g., ROP theory, SEH structure, egghunter logic), provides code examples,
and walks through the initial steps of various exploitation techniques. Expect
diagrams, assembly snippets, and explanations of Windows internals relevant
to the exploits.

The videos demonstrate the practical application of the concepts explained in
the PDF. Watching the instructors configure tools, debug applications, identify

6

breachedlabs.com

http://breachedlabs.com

issues, and build exploits step-by-step can significantly aid understanding.
They often bridge the gap between theory and hands-on execution.
It's crucial to use both resources together. Read the relevant PDF section to
grasp the concepts, then watch the corresponding video to see it in action.

The Lab
The OSED lab network is usually simpler than the sprawling OSCP labs. It
focuses on providing specific target machines (Windows VMs) running
vulnerable applications designed to teach the course concepts. You'll likely
have a few different target VMs, each tailored for specific modules or
techniques.

Types of Challenges:

● Guided Examples: These directly follow the course material
(PDF/videos). Your goal is to replicate the steps shown, ensuring you
understand each part of the process.

● Extra Mile Exercises: These often take the guided examples further,
perhaps requiring you to adapt the exploit for a slightly different
scenario, deal with new bad characters, or achieve a different objective.
They test your understanding beyond simple replication.

It’s strongly recommended that you complete all guided examples, alongside
the optional (but personally, mandatory) extra mile exercises.

You have 3 lab challenges which you can complete. These will test you on
the very topics which are covered by all the exam sets on which you can land
on.

If you need help with any of the lab challenges, the OffSec Discord is a good
place to ask for help. Explain clearly what you've tried and where you're

7

breachedlabs.com

http://breachedlabs.com

stuck. Avoid asking for direct answers; focus on understanding the concept
you're missing.

Lastly: document everything. Your analysis steps, debugger commands,
memory addresses, offsets, ROP gadget addresses, bad characters found,
Python script versions, errors encountered, and how you fixed them. Use a
structured note-taking app (CherryTree, OneNote, Obsidian).

The Exam
The OSED exam is a hands-on, practical test. You'll be given access to a
separate exam VPN environment containing several vulnerable applications
(typically 3 assignments, points vary).

You have a strict time limit (47 hours and 45 minutes) to develop working
exploits. Following the exploitation phase, you have an additional 24 hours to
write and submit a detailed professional report.

Typical exam challenges include:

- Handmade x86 Shellcode
- DEP/ASLR Buffer Overflow
- Reverse Engineering with IDA Pro

You need exactly 2 exploits, out of the 3 possible to pass the OSED exam.

Your report must include:

● Detailed steps for vulnerability analysis and exploit development.
● Explanation of the techniques used (ROP chain logic, shellcode

function, etc.).

8

breachedlabs.com

http://breachedlabs.com

● Relevant code snippets (your exploit script, shellcode).
● Screenshots illustrating key steps (debugger state, successful execution

like whoami or proof.txt).
● Clear, concise, professional language.

The Mindset
OSED is a marathon, not a sprint. It's challenging, and it's easy to get
discouraged. Proactively manage your motivation:

● Set Realistic Goals: Break down the course into smaller, manageable
chunks (e.g., "Master SEH overflows this week," "Complete the ROP
module exercises").

● Take Regular Breaks: Step away from the keyboard, especially when
frustrated. Go for a walk, do something unrelated. Often, solutions
appear when you return with a fresh perspective.

● Celebrate Small Wins: Successfully replicating a guided exercise,
finding your first ROP chain, getting shellcode to execute, acknowledge
and appreciate these victories.

● Connect with the Community: Engage with fellow students on the
OffSec forums or Discord. Sharing struggles and successes can be
motivating (but avoid asking for spoilers!).

● Focus on Learning, Not Just Passing: Understand the underlying
concepts deeply. The learning itself is valuable, regardless of the exam
outcome on the first try.

● Maintain Balance: Don't let OSED consume your entire life. Maintain
hobbies, relationships, and physical activity to avoid burnout.

9

breachedlabs.com

http://breachedlabs.com

Buffer Overflows
A rock-solid understanding of the stack overflow is the essential starting
point. These concepts underpin almost everything that follows.

Identifying Stack Overflows:

● Fuzzing Basics: Sending increasingly long or malformed input to
an application (especially network services or file parsers) to
trigger crashes. Simple Python scripts using sockets or file
manipulation can automate this. Look for crashes indicating
potential control over the instruction pointer (EIP).

● Crash Analysis: When the application crashes under a debugger
(like WinDbg or Immunity Debugger), examine the state of the
registers, especially EIP and ESP, and the stack contents. If EIP
contains parts of your input (e.g., 41414141 which is AAAA),
you've likely found a stack overflow where you control the return
address.

Understanding the Stack during Overflow:
When a function receives more data than its local buffer on the stack can
hold, the excess data overwrites adjacent stack memory. This typically
overwrites:

● Other local variables.
● The saved EBP (previous function's stack frame base pointer).
● The saved EIP (the return address – where execution should

resume after the function finishes).
Visualizing the stack layout (high addresses to low addresses:
function arguments -> return address -> saved EBP -> local
variables/buffer) is crucial.

10

breachedlabs.com

http://breachedlabs.com

Controlling Execution Flow:
The primary goal of a basic stack overflow is to overwrite the saved EIP on
the stack with an address of your choosing. When the vulnerable function
executes its ret instruction (which pops the return address off the stack into
EIP), it will jump to your supplied address instead of returning normally.
Usually, this address points to shellcode you've also injected into memory
(often onto the stack itself, just after the EIP overwrite).

Dealing with Bad Characters:

They are characters that terminate or corrupt your payload when processed
by the vulnerable application or protocol. Common examples include:

● Null Byte (\x00): Often terminates strings in C functions like strcpy.
Almost always a bad character.

● Line Feeds (\x0a), Carriage Returns (\x0d): Can break network
protocols or text input processing.

● Whitespace (\x20, \x09): Can be problematic depending on input
parsing.

● Protocol-Specific Characters: Characters with special meaning in
HTTP, FTP, etc. (e.g., /, ?, &).

● Application-Specific Characters: Some functions might filter or
modify specific bytes (e.g., converting case).

Identifying Bad Characters Systematically:

Send a full byte range (\x01 through \xff) as part of your payload after
achieving EIP control (pointing EIP to a buffer containing these bytes).

In the debugger, examine the memory where your byte range should be.

Identify any missing bytes or bytes that caused the sequence to truncate. The
last working byte before the corruption or truncation indicates the bad
character.

11

breachedlabs.com

http://breachedlabs.com

Remove the identified bad character and repeat the process until all bytes
from \x01 to \xff arrive unmodified in memory. Remember \x00 is almost
always bad.

Techniques for Handling/Avoiding:

Once bad characters are identified, you must ensure your EIP overwrite
address, ROP gadget addresses, and shellcode do not contain them.

● Shellcode Encoding: Use encoders (like XOR, ADD/SUB) to transform
shellcode into safe bytes, prepended with a small decoder stub that
also avoids bad chars.

● ROP Gadget Selection: Choose ROP gadgets whose addresses do
not contain bad characters. Tools like mona.py can help filter gadgets.

● Alternate Instructions/Techniques: Sometimes, you might need to
find alternative ways to achieve a goal if the most direct method uses
bad characters (e.g., using multiple ADD instructions instead of one
MOV with a bad byte).

Static Analysis With IDA Pro

Familiarize yourself with the Graph view (visual control flow), Disassembly view
(raw assembly), and Pseudocode view (decompiled C-like code - incredibly
useful).

Look for known dangerous C functions (strcpy, sprintf, gets, memcpy with
uncontrolled size, printf with format string issues, etc.). Use the tool's search
and cross-reference features.

Trace program execution flow, identify how user input is processed, check
boundary conditions, and understand data transformations (like custom
encoding/decoding).

12

breachedlabs.com

http://breachedlabs.com

Locate buffer declarations (e.g., [ebp-100h]) in the disassembly or
pseudocode near vulnerable functions to estimate required overflow sizes.

Extremely useful for seeing where a function is called from (xref from) or where
a specific memory address/variable is accessed (xref to). Helps trace data
flow and identify interesting code paths.

If the program uses custom encoding or checks, static analysis helps
decipher the logic step-by-step.

Shellcode Development

Shellcode can't hardcode addresses due to ASLR and different Windows
versions. Techniques involve:

● Walking the PEB/TEB: Use known offsets within the Process
Environment Block (PEB) and Thread Environment Block (TEB)
(accessed via the FS segment register) to find the base address of
loaded modules like kernel32.dll.

● Parse the Export Address Table (EAT) of kernel32.dll to find
LoadLibraryA and GetProcAddress.

● Use LoadLibraryA to load other needed DLLs (e.g., user32.dll).
● Use GetProcAddress to find the addresses of any other required API

functions (e.g., WinExec, VirtualAlloc).

Hashing APIs: Instead of searching for function names (strings) in the EAT
(which might contain bad characters or be suspicious), calculate a hash for
each required function name. Your shellcode then walks the EAT, calculates
the hash of each exported function name, and compares it to the target hash.
This is more compact and stealthy.

Position-Independent Code (PIC):
13

breachedlabs.com

http://breachedlabs.com

● Use relative jumps (JMP short, JMP $+offset) and calls instead of
absolute ones.

● Use CALL $+5 followed by POP ECX to get the current instruction
pointer (EIP) into a register (ECX) for calculating addresses of strings or
data embedded within the shellcode.

● Access embedded data using offsets from the obtained EIP (e.g., [ecx
+ offset_to_string]).

Debugging Shellcode:

● Use WinDbg or Immunity Debugger.
● Isolate the shellcode for testing if possible.
● Place an INT 3 (\xcc) breakpoint at the start.
● Step through instruction by instruction (t), monitoring registers

(especially EAX for API return values) and memory to ensure it
behaves as expected.

● Use NOP sleds (\x90) before shellcode during initial testing (if
space permits) to slightly increase the chance of landing in
executable code if your jump address is slightly off, but remove
for final exploit unless needed.

SEH Exploitation

In a classic stack overflow scenario, if the overflow extends far enough up the
stack, it can overwrite an SEH record. The goal is to:

1. Overwrite the SE Handler pointer with the address of code we
control (e.g., a pointer to a POP POP RET gadget).

14

breachedlabs.com

http://breachedlabs.com

2. Overwrite the Next SEH Record pointer with a short JMP
instruction that jumps over the overwritten SE Handler pointer to
our shellcode placed immediately after it.

Finding POP POP RET Gadgets: When an exception is triggered and our
overwritten SE Handler is called, the stack layout isn't immediately suitable for
jumping directly to shellcode. A POP POP RET sequence is needed.

The two POP instructions remove the SE Handler and Next SEH pointers
from the stack.

The RET instruction then pops the next value from the stack into EIP. If we
place our short JMP instruction (which overwrote the original Next SEH
record) correctly, this RET will jump to that JMP, which then jumps forward to
our main shellcode.

Building SEH Exploits:

1. Identify a stack overflow vulnerability.
2. Determine the offset to overwrite the SEH record (Next SEH and SE

Handler).
3. Find a suitable POP POP RET gadget address (no bad chars, preferably

in a non-SafeSEH module if relevant).
4. Craft the payload: [JUNK] -> [Short JMP] (overwrites Next SEH) ->

[Address of POP POP RET] (overwrites SE Handler) -> [Shellcode].
5. Trigger the exception (e.g., by causing an access violation after the

overflow). The OS calls the overwritten handler (POP POP RET), which
adjusts the stack and returns into the JMP, leading to the shellcode.

15

breachedlabs.com

http://breachedlabs.com

DEP Exploitation

Use ROP gadgets like POP EAX; RET, POP EBX; RET, etc. Place the desired
value on the stack immediately after the gadget's address. When the gadget
executes, it pops your value into the target register.

● Basic ROP Chains: The common goal is often to call VirtualProtect or
VirtualAlloc from the Windows API:

● VirtualProtect: Change permissions on a memory region (e.g., the
stack where your shellcode lies) to make it executable (RWX).

● VirtualAlloc: Allocate a new region of memory with executable
permissions (RWX), copy shellcode there, and jump to it.
To call an API function via ROP, you need gadgets to:

● Load the required arguments into the correct registers or onto the stack
(following the function's calling convention).

● Load the address of the API function itself (e.g., VirtualProtect) into a
register or onto the stack.

● Use a CALL EAX; RET or JMP ECX; RET style gadget, or simply RET
directly to the API function address if placed correctly on the stack after
arguments.

Building ROP Chains:

● Planning: Define your goal (e.g., call VirtualProtect). Identify the
required arguments and their order. Find the address of the target
API function (often needs to be fixed up if ASLR is also in play).

● Gadget Sequencing: Search for gadgets to load each argument.
Sequence the gadget addresses and corresponding argument
values meticulously on the stack. Ensure the stack pointer (ESP)
is correctly managed by the gadgets.

● Stack Pivot Techniques: If your overflow space is limited or you
need to place your ROP chain elsewhere (e.g., heap), use a

16

breachedlabs.com

http://breachedlabs.com

"stack pivot" gadget. Examples: XCHG EAX, ESP; RET (swaps
EAX and ESP, useful if EAX points to your chain), MOV ESP, EBP;
POP EBP; RET. This makes ESP point to your main ROP chain.

● Bad Characters: Crucially, none of the addresses used in your
ROP chain (gadget addresses, API addresses) can contain bad
characters identified earlier. This often heavily constrains gadget
selection.

ASLR Exploitation
ASLR makes exploitation harder by randomizing the base addresses of key
memory regions, making hardcoded addresses unreliable.Use Non-ASLR
Modules: This is the most common and crucial technique for OSED. Check if
the target application loads any DLLs that were compiled without the
/DYNAMICBASE flag (meaning they are not ASLR-enabled).

These modules will load at the same predictable base address every time the
application runs.

● How: Use tools like mona.py (!mona modules in Immunity/WinDbg) to
list loaded modules and check their ASLR status.

● Impact: If a non-ASLR module exists, you can build your entire ROP
chain using gadgets only from within that module, as their addresses
will be static and reliable. You can also use addresses of functions
exported by this module (like LoadLibraryA or GetProcAddress if
available, though less likely).

Leaking Information: If no non-ASLR modules are available, you might
need an information leak vulnerability. This is a separate flaw (e.g., format
string vulnerability, buffer over-read sending back stack data) that discloses a

17

breachedlabs.com

http://breachedlabs.com

valid pointer from a randomized memory region (e.g., a stack address, or an
address within a specific DLL like kernel32.dll).

● How: Exploit the info leak first to retrieve the pointer.
● Impact: Use the leaked address to calculate the actual randomized

base address of the module it belongs to (leaked address - known
offset = base address). Once you know the base address, you can
calculate the runtime addresses of any needed ROP gadgets or API
functions within that module for the current execution

Methodology
When faced with a new binary in the labs or exam, resist the urge to jump
straight into exploit code. Follow a systematic approach:

1. Reconnaissance:
● Understand the application's purpose and functionality. How is it

meant to be used?
● Identify input vectors: Network ports/protocols, file formats,

command-line arguments, UI interactions. Where does
user-controlled data enter the program?

● Run the application normally, interact with it, observe its behavior.
Use tools like netstat, Process Monitor if needed.

2. Vulnerability Discover:
● Fuzzing: Send malformed or oversized data to the identified input

vectors. Use simple scripts or basic fuzzing tools. Monitor for
crashes.

● Static Analysis (IDA): Load the binary. Look for obvious
vulnerable functions (strcpy, sprintf etc.). Analyze functions
handling user input. Understand data flow from input to potential
danger zones. Look for buffer size definitions.

18

breachedlabs.com

http://breachedlabs.com

● Dynamic Analysis (WinDbg): Attach the debugger. Set
breakpoints before and during input processing. Step through
code handling input to see how it's used.

3. Crash Triage:
● Once a crash is triggered, reproduce it reliably under the

debugger.
● Analyze the crash state: Examine EIP, ESP, EBP, and other

registers. Look at the stack (k, dd esp). Did EIP get overwritten
with your input (e.g., 41414141)? Did an SEH record get
overwritten?

4. Developing the Exploit Primitive:
● Calculate the exact offset to control EIP or the SEH record using a

cyclic pattern (msf-pattern_create/offset).
● Confirm you can reliably control the instruction pointer (or the SE

Handler pointer in SEH). Test by pointing it to a simple address
like 0xDEADBEEF and verifying EIP contains that value upon
crashing.

5. Identifying and Overcoming Protections:
● Check loaded modules for DEP and ASLR status (!mona modules

or similar). Are there any non-ASLR modules?
● Determine the required bypass technique:

● DEP Present -> ROP required.
● ASLR Present & Non-ASLR module available -> Use

gadgets from the non-ASLR module.
● No DEP/ASLR (rare) -> Simple EIP overwrite to shellcode

might work.
● Identify bad characters specific to this vulnerability context.

6. Shellcode Integration and Execution:
● Develop or generate shellcode, ensuring it avoids bad characters.
● Encode shellcode if necessary and create a decoder stub (or plan

a ROP decoder).

19

breachedlabs.com

http://breachedlabs.com

● Build the ROP chain (if needed) to bypass DEP (e.g., call
VirtualProtect/VirtualAlloc), using only gadgets from non-ASLR
modules if ASLR is enabled. Ensure all gadget addresses avoid
bad characters.

● Integrate the components (Padding, EIP/SEH Overwrite, ROP
Chain, Decoder, Shellcode, Egghunter if needed) into your exploit
script.

7. Refinement and Reliability:
● Test the exploit multiple times after reverting the target VM to

ensure it works reliably.
● Clean up exploit code, add comments.
● Troubleshoot any lingering issues (timing, slightly wrong offsets,

missed bad chars).

Additional Study Materials

Corelan Team: (corelan.be): Essential reading. Their tutorials on stack
overflows, SEH, ROP are legendary foundations.

FuzzySecurity: (fuzzysecurity.com/tutorials.html): Excellent Windows
exploit dev tutorials.

Blogs: Search for exploit development writeups, specific technique
explanations (e.g., egghunters, ROP techniques). Many security researchers
share valuable insights. Plenty of writeups and exploit code can be found on
Github.

VulnHub: Search for Windows machines tagged with "buffer overflow" or
"exploit development".

20

breachedlabs.com

http://fuzzysecurity.com/tutorials.html
http://breachedlabs.com

Ending Notes
OSED is a significant milestone, but exploit development is a constantly
evolving field. New mitigations arise, architectures change, and techniques
adapt. Embrace the mindset of a lifelong learner. Stay curious, keep
practicing, read research, and challenge yourself.

The path to OSED is challenging, demanding patience, meticulousness, and
the famous "Try Harder" spirit. There will be moments of frustration, but the
breakthroughs and the deep understanding gained are incredibly rewarding.
Trust the process, rely on your fundamentals, practice diligently, and
approach the challenges systematically.

21

breachedlabs.com

http://breachedlabs.com

	
	
	What is the OSED
	Why OSED
	Career Paths
	Ideal Path to OSED
	The Course
	The Lab
	The Exam
	The Mindset
	Buffer Overflows
	Static Analysis With IDA Pro
	Shellcode Development
	SEH Exploitation
	
	DEP Exploitation
	ASLR Exploitation
	Methodology
	Additional Study Materials
	Ending Notes

